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Power Leakage, Characteristic Impedance, and

Leakage-Transition Behavior of Finite-Length Stub

Sections of Leaky Printed Transmission Lines
Nirod K. Das, Member, IEEE

Abstract— Power leakage and leakage transition phenomena
in finite-length stub sections are studied for slot- as well as
strip-type leaky transmission lines. A three-dimensional (3-D)
method of moments is used for the rigorous analysis of the stub
sections. The results reveal several important characteristics of
power leakage in printed circuits that are not obtainable from
the two-dimensional (2-D) analyses of ideal infinite-length lines.

A new definition of the characteristic impedance for a leaky

printed transmission line is proposed, which is shown to correctly
model the impedance behavior of the finite-length sections. It is

noted that the standard definitions of characteristic impedance,
commonly used for nonleaky transmission lines, may not apply

to practical circuits when leakage exists. Further, the leakage

transition behavior in the finite-length sections, operated around
a “mode-transition” region, is explained from the 3-D analysis
results. Leakage analyses of ideal infinite-length lines can not
model such transition excitation in finite-length circuits.

I. INTRODUCTION

I

T has been recognized that under certain conditions of

frequency and/or physical parameters, tie dominant mode

of a multilayered printed transmission line can leak power

transversally due to coupling to the surface-wave mode(s)

[ 1]-[5]. Such leakage effects demand careful attention in

multilayer integrated circuits. and multilayer feed networks

for integrated phased arrays [6], which could otherwise result

in catastrophic coupling between adjacent circuit components.

Coupling between two transmission lines placed electrically

far apart, established through such leakage power, can also

be used to one’s advantage for designing novel printed circuit

couplers. New analyses to model the leakage in printed trans-

mission lines have been presented using a rigorous spectral

domain method [2] that has been successfully applied to a

variety of geometries in [2]–[4] and [7] as well as using a

mode-matching approach [1]. However, all the above analyses

assume an ideal infinite-length line. In order to understand the
possible leakage phenomena in practical printed circuits, it is
important to investigate the leakage in realistic finite-length

sections. Several important characteristics of power leakage in

practical circuits can not be explained using the analyses that

ideally assume an infinite-length transmission line.
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None of the research to date on power leakage has investi-

gated the impedance characteristics of leaky printed transmis-

sion lines. It is essential to define an “equivalent characteristic

impedance,” that can correctly model the impedance behavior

of finite-length sections under leakage conditions. However,

due to the “nonconventional” nature of a leaky printed trans-

mission line [2], fundamental difficulties arise. The standard

definitions of characteristic impedance, commonly used for

conventional nonleaky transmission lines, may not be appli-

cable when leakage exists.

Complex mode characteristics of an ideal infinite-length

leaky line in the vicinity of a “mode-transition” region have

been studied [5]. However, it is of interest to understand the

leakage transition behavior on a practical finite-length structure

operated in this region. Unfortunately, such leakage behavior

on finite-length circuits can not be properly explained from

the mode characteristics of an ideal infinite-length line. The

actual excitation on a finite-length section would be a com-

plex combination of the multiple modes of the infinite-length

line, with other discontinuity effects. Rigorous 3-D analysis

of the finite-length circuit with a realistic feeding source

may have to be performed in order model such excitation

behavior.

Further, it has been shown in [2] that the fields of a leaky

printed transmission line ideally of infinite length grows expo-

nentially in transverse directions to infinity at large distances.

As explained in [2], this “nonconventional” infinite growth is a

physically valid behavior for the ideal situation of an infinite-

length leaky line. This does not violate the radiation condition

of the electromagnetic theory due to the associated infinite

input power (because e–m” grows to cc as z ~ –co) of the

infinite-length line. Of course, for a practical situation of a

finite-length leaky line, the fields can never grow indefinitely

in transverse directions. As the radiation condition dictates,

the fields in the finite-length case must eventually decay down
to zero at sufficiently large distances. Hence, the obvious

questions do arise: 1) How far in transverse directions do the

fields of a finite-length leaky line grow? and 2) how does

this growth compare and contrast with the exponential growth

predicted from the analysis of au ideal infinite-length line?

Study of finite-length sections of leaky transmission lines will

be essential in order to evaluate such field-spreading behavior.

In a practical circuit, this will help determine the extent

of the unwanted coupling between neighboring components.

established due to the power leakage.
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Fig. 1. Geometry of a finite-length section of an example leaky conduc-
tor-backed slotline m a general multilayer configuration, excited by a small

current-source at tfre center.

This paper attempts to answer such questions of practi-

cal significance discussed above. A rigorous 3-D moment

method analysis of finite-length leaky transmission line stubs,

excited by a delta-gap source along the line, is used for

this investigaticm. The analysis is applied to strip- as well

as slot-type leaky lines, demonstrating the leakage concepts

in different situations. Section II describes the 3-D moment

method analysis. The results of the 3-D analysis for radiation

as well as surface-wave leakage in selected finite-length stub

sections are colmpared and contrasted with the results from

an ideal infinite-length analysis. Section III presents the new

definition of the characteristic impedance for leaky lines,

and its validity is demonstrated via comparison with the

rigorous analysis. Finally, Section IV presents the results for

the leakage transition effects. In all our discussions, the scope

of a “transmission line,” or a “line,” is limited to printed

geometries only,

II. ANALYSIS OF FINITE-LENGTH STUB

SECTIONS OF LEAKY TRANSMISSION LINES

Fig. 1 shows a finite-length stub section of a leaky

conductor-backed slotline, used here as an example geometry

for the analysis. The finite-length section of length 2L is
excited at the center by a parallel delta-gap current source

of unit amplitude, and may be configured within a general

multilayer environment. Such a conductor-backed slotline can

exhibit leakage to the parallel-plate mode below the slot, and

is used here as a representative leaky transmission line. The

analysis can be applied, as discussed, to other strip- as well

as slot-type leaky transmission lines, with single or multiple

sources at arbitrary locations along the line.

We analyze the finite-length section of Fig. 1 using a

3-D moment method analysis in the spectral domain. Sim-

ilar moment method analyses have been commonly used

for printed circuit problems [8]–[12] that can be referred to

for detailed background. We close the slot, and equivalently

replace the unknown electric fields, E, (z, y), across the

slotline by magnetic current distributions, +~s (z, y). The

two magnetic current distributions, +~s and –~s, of equal

magnitude but oppositely directed to each other, are placed

above and below the ground pllane, respectively

Now, the unknown ~s (x, y) is solved by expanding it by

a set of (2iV + 1) piecewise sinusoid (PWS) basis functions

with unknown coefficients, Vi [91, [121

N

h(y) = —
1

n/(w/2)’ -g’ ‘

(2)

(3)

fJx) = i
sin [k~(Lz -- IZ~l)l ; lx [ s Li)

%
sin (kjL, )

= O; elsewhere, (4)

L
La = -—

1(+1’

iL
Xi= X—iLi= z___

N+l

(5)

(6)

It is assumed that ~s is z-directed, or equivalently ~. is y-

directed. This is known to be a good approximation for narrow

slots, neglecting any small longitudinal (z-directed) slot-fields.

The transverse variation, h(y), across the slot includes an

appropriate edge condition to accommodate for the electric

field singularities at the slot edges. The lc~ in (4) is an arbitrary

numerical parameter. This parameter should preferably be

chosen close to the effective phase constant of the transmission

line [2] in order to achieve better convergence with respect to

the number of basis functions, 2N + 1. As a general guidance

to selecting N in (2), about ten or more PWS modes over one

guide wavelength should be adequate for accurate results.

The (2N + 1) unknown basis coefficients in (2) are solved

using a Galerkin testing procedure in the spectral domain,

enforcing the continuity of the magnetic field across the slot.
This results in a complete set c~f (2N + 1) linear equations to

be solved for all Vi’s

5 xY,j= Ia; i=–N,..., +N, (7)
j=–N
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Y~j = & II (GH.2Mm (L, J$,)+GH.lM.(k, h))
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.F,(kz)FJ*(kx)]H(ku)12clkxdky, (8)

{

~= 1; fori=O,
a O; otherwise

(9)

where ~ (kV ) and F, (kr ) are, respectively, the Fourier trans-

forms of the spatial distribution f~nctions, h(y) and ,f, (~),

defined in (3), (4). GHZ z~{z and GHT lMZ are, respectively,

the spectral-domain multilayer Green’s functions [13], [14]

for the x-component of the magnetic field, produced by an x-

directed magnetic source. Both the source and the field points

are slightly above the ground plane for ~HZ z~{x, whereas they

are slight] y below the ground plane for ~H, l~Z. In (7) and (9),

1, is the excitation to the ith basis function from the source

current. This excitation is provided by the delta-gap current

source (see Fig. 1) at the center of the slot-section that directly

couples only to the zeroth (i = O) basis function at the center.

Excitation at other positions along the slotline is handled by

setting the appropriate excitation elements, 1,.

After the unknown coefficients W‘s are solved from (7),

the total slot field, E. (x, y), can be obtained using the

equations ( 1)–(6). Then, any cross-sectional field component

at an arbitrary location around the slotline can be computed

using the corresponding Green’s function component and the

Fourier transforms of the slotfield. fis (kz, kv), via an inverse

spectral integration.

It may be noted that the spectral-domain evaluation of the

moment matrix elements in (8) does not require any special

deformation of the integration contour in order to account for

the leakage phenomenon. The two-dimensional (2-D) moment

integrations are performed along the real spectral axes (kz, kv )

in the same way for cases with or without any power leakage.

In distinct contrast, the spectral-domain analysis of an ideal

infinite-length leaky transmission line [2], [15] is performed

using a one-dimensional integration on the complex kg plane.

This requires a special contour deformation procedure off the

real spectral (kV) axis, around specific complex pole(s).

Extension of this analysis to strip-type lines is possible by

replacing the equivalent magnetic currents on the slot plane of

Fig. 1 by the electric currents on the strips of a strip-type line.

In addition, the parallel delta-gap current source of excitation

in Fig. 1 should be replaced by a series delta-gap voltage
source for a strip-type line. The effect of the electric current

source and any arbitrary substrate layers can be accommodated

via use of the proper Green’s functions [13], [14]. The zero

tangential electric field on the smip surface is the required

boundary condition in a stripline case, instead of the continuity

of the electric field enforced across the slot in (8).

A. Results

Fig. 2 shows the computed slot-voltage for a conductor-

backed slotline section of Fig. 1, compared with the similar

results for a nonleaky air-slotline. Clearly, the conductor-

backed slotline exhibits an attenuating behavior, in contrast to
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Fig. 2. Voltage across the slot, computed from a full-wave finite-length

analysis of the geometry of Fig. 1. M’ = O 3 cm, no cover substrate,
uniform dielectric between parallel plates (c. = 255, thickness = 0.801 cm),
L = 6 cm, frequency = 10 GHz. Inset is the slot-voltage, computed from

the same full-wave finite-length analysn, across an air-slotline section (2L =
10.0 cm), fed at the center by a delta-gap 1.0 A current-source. Slot width =

0.1 cm. frequency = 10 GHz. Notice, the former geometry is clearly leaky.
whereas the latter m nonleaky.

the nondecaying standing-wave behavior for the air-slotline.

This result supports that finite sections of certain transmission

lines can exhibit significant attenuation, even when material

losses are absent, due to coupling to the characteristic surface

mode(s). This is consistent with the recent prediction from an

ideal infinite-length analysis [2].

For the leaky conductor-backed slotline in Fig. 1, we as-

sume an e~~~’ e~ax = e~~z propagation, and a total reflection

at the short-circuited ends with a reflection coefficient r = – 1.

With these assumptions, the slot-voltage, V(z), can be written

as

V(x) = A[e+7(~-l~\) – ~-T(~-lZl)]

= 2Asinh [7(L – Izl)], (10)

]V(X)12 = 4\ A12[sin2 @(L - 1x1) + sinh2 ~(L - Ixl)]. (11)

In Fig. 2 the lower envelope of the IV(r) 12 pattern is

41A I2 sinh2 a(L – IT I). The additional oscillating function,
superimposed above the lower envelope, is 4 IA 12sin’ P(L –

Izl). Therefore, A and ,b can be calculated from the amplitude

and the periodicity, respectively, of the oscillating part. Using

the above value of A, the attenuation constant, a, can then

be derived from the lower envelope. The phase constant, /3,

and the attenuation constant, a, obtained using the above

procedure are compared in Fig. 3 with the respective values

from the analysis of an ideal infinite-length line [2]. Similar

comparison between the results from a finite- and an infinite-

length analyses of a two-layer stripline geometry are presented

in Fig. 4. As has been mentioned earlier, the analyses of an

infinite-length and a finite-length leaky transmission lines are
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Fig. 4. The phase, ,8, and attenuation, q constants of a two-layer stripline

of Fig. 15 with h = 10 roils, derived from the current distribution ou a fi-
nite-length section, as compared”to those obtained from an ideal infinite-length

anatysis. The finite-section used for the anatysis is a stub section of length, L,
open circuited at both ends and excited by a series delta-gap voltage source at
the center (see Fig. 16). W’ is the width of the stub. The poorer comparison
for lager W is due to the graduat excitation of the additional nonleaky mode

(shown in Fig. 15)

fundamentally different. However, it is interesting to see that

the two sets of results in Figs. 3 and 4 are quite close to each

other. This confirms that, in spite of the nonstandard nature

of an ideal infinite-length leaky line with indefinitely growing

fields, the propagation characteristics predicted assuming

the infinite-length idealization is still relevant and valid

for practical finite-length sections. As will be explained,

however, the infinite-length idealization will fail to model the

impedance, field-spreading, and leakage-transition behavior of

finite-length sections.

The results of Figs. 2-4 are for example cases that leak

power to a surface parallel-plate mode. Similar leakage can

also occur due to radiation to a semi-infinite medium above or

below a transmission line [2]. The slot-voltage of an example

slotline section with two semi-infinite dielectric media on its

two sides is plotted in Fig. 5. In agreement with the prediction

from an infinite-length analysis of [2], this finite-length geom-

etry also exhibits an attenuating behavior. Interestingly, the

phase, ~, and attenuation, a, constants derived from Fig. 5

are found to match with the results from a complex-branch

plane analysis [2] (which is fundamentally different) of the

infinite-length line.

The transverse field component, llv, of the finite-length

geometty of Fig. 2 is computecl using the 3-D moment method

analysis. The results are compared in Fig. 6 with the ex-

ponential growth derived from a 2-D analysis of an ideal

infinite-length conductor-backed slotline [2]. The growing

nature of tie field of the finite-length case, for a limited region

away from tie center, is clear] y seen. The growth rate in this

region agrees well with the ideal exponential growth of the

infinite-length line. However, beyond about 3.0 cm away from

the center the field amplitude for the finite-length case has

decayed down to a low level, stidsfying the radiation condition

of the electromagnetic theory, whereas for the ideal infinite-

length line the field continues to grow indefinitely. As these

results suggest, the exponential transversal growth of an ideal

infinite-length leaky line should be interpreted as valid for

practical situations only up to a limited distance away from

the central region, but considered nonphysical sufficiently far

away. In order to determine the actual field-spreading behavior

of a practical finite-length section, a rigorous 3-D analysis

must be performed. Information about such field-spreading is

valuable for practical circuit design and understanding.

III. CHARACTERISTIC IMPEDANCE

OF LEAKY TRANSMISSION LmEs

All research to date [ 1]–[5] on leakage from printed lines

has concentrated only on the propagation characteristics.

The impedance characteristics of leaky lines have not

been investigated. It is important to correctly define a

characteristic impedance, Z., for an ideal infinite-length

leaky line that can be useful for a circuit modeling of

practical finite-length sections. However, defining such an

“equivalent characteristic impedance” is made complicated

due to the nonconventional growing fields of the infinite-

length leaky line. A standard power-voltage definition

[ZC = (voltage) 2/(cross-sectional power)], or a power-current

definition [Z. = (cross-sectional power) /(current)2] of the

characteristic impedance would not apply under this situation.

Due to the growing nature of the transverse fields, which

increase to infinity at large distances, the total cross-sectional

power would become infinitely large. This will result in a zero

or an infinite value of the ChafalCtefiStiC impedance, if a power-
voltage or a power-current definition is used, respectively. Of

course, these trivial values are not practically meaningful for

circuit modeling. The voltage-current definition (Zc = voltage

between the two conductorsithe total current) would also

not work. The strong non-TEM and nonconservative nature

of the leakage fields can result in invalid calculation of the
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Fig. 5. Variation of the slot-voltage along a finite-length slotline section with two semi-infinite dielectric mediums on its two sides (air and G- = 2.2).

IL’ = 0.1 cm, 2L = 10 cm, frequency = 10 GHz. @/ko = @6 and a/ko = 0.07, as calculated from this voltage distribution. The corresponding
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Fig. 6. Transverse varration of the y-component of the magnetic field, ~u,
for the conductor-backed slotline geometry of Fig. 2, at z = 3.0 cm,
computed from a 3-D moment method analysis of the fimte-length geometry.
The exponential variation predicted from an ideal infinite-length analysis is
also shown for comparison.

characteristic impedance. This is due to the strong ambiguity

in defining the voltage of a strip-type leaky line for a given

strip current, or the total current of a slot-type leaky line for

a given slot voltage.

We attempt to provide a suitable definition of the “equivalent

characteristic impedance” of a leaky line that can be used

a/ko = 0.068.

for circuit modeling purposes. Shown in Fig. 7, a transverse

field distribution of an infinite-length leaky line has been

decomposed into two distinct parts [2]. The part that in-

creases exponentially in transverse directions is excited dtte

to coupling to the characteristic surface-mode of the substrate

structure. This part is referred to as the “growing” field.

When this growing field is extracted out of the total field

distribution, the remaining part is tightly confined to the central

guiding region, and is referred to as the “bound” field. The

bound parts of the transverse fields actually carry the guided

signal along the central region of the transmission line, and

closely resemble the standard transmission line fields with a

quasi-TEM-like behavior. Therefore. these bound transmission

line-like fields are expected to be “seen” by a circuit element

connected across the leaky line. On the other hand, the growing

fields are only loosely attached to the central guiding region

that are responsible for distributed radiation loss from the

transmission line. These radiation fields are not a part of the

quasi-TEM guided fields, and therefore, would not be “seen”

across the line in a circuit sense.

We analytically extract out the growing parts from the total

transverse fields of an infinite-length line, and then compute

the power due to the remaining bound fields. A characteristic

impedance defined using this bound-mode power, referred

to as the “bound mode characteristic impedance,” is shown

to correctly model the input impedance behavior of finite-

length stub sections. In the following we derive the bound-

mode power for a conductor-backed slotline that can be

similarly extended for any other leaky line. The transverse field

components of an ideal infinite-length line can be expressed in
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valid above and below the ground plane (z > 0 or z <

O), respectively produced by an z-directed magnetic current

source placed slightly above or below the ground plane. Notice

that the km spectral parameter in the Green’s functions have

l.ksQ’- been substituted by –k. in (15) which accounts for the e–~ke’

—— variation along the transmission line.-.
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Decomposition of the transverse variation of a field component, l?.,
of-an ideat infirt~e-length leaky transmission line (a conductor-backed slotline
geometry, for example) into 1) the “bound field tightly confined to the central
guiding regio~ and 2) the exponentially “growing” field due to the excitation
of a characteristic surface mode. llte field is plotted along a transverse (y)
line below the slot, where tfte paratlel-plate mode exists. The growing field
would not exist above the slot. Also note that the example field, Ex, is shown
with art odd symm~etry about the origin, but in generat the field can have an
odd or art even symmetry.

the spectral domain using the Fourier transform of the strip-

currents or slat-fields, respectively, for a strip- or slot-type

transmission line, via spectral Green’s functions. For a leaky

conductor-backed slotline propagating in the i direction (see

Fig. 1 for cross-sectional geometry), assume the electric field,

~,, distribution across the slot

E. = jjVOh(y)e-~k”Z. (12)

This field distribution is equivalent to two magnetic currents

+~, and –M,, respectively-placed above or below the slot,

where

With this expression for the slot-field, a cross-sectional field

component, for example the z-component of electric field,

EZ (y, z), can be expressed as

GEzMm(kg, 2) = –GE.lM=(–ke, kg, z); ~ <0,

= +GE=2mrc(–~e> ~y, Z); % >0 (15)

where H (kV ) is the Fourier transform of h(y). With similar
notation used in (8), and also to be used for other field

components, @EZZM=(kz, lCY,Z) and GE. lM. (lc., ~Y, Z) are,

The required contour, C, of the inverse spectral integration

in (14) is deformed around the poles, +kVP, on the complex

kv plane (see Fig. 8)

%.= Jim Im(’%) >0 (16)

where /3P is the propagation constant of the characteristic

surface-wave mode (for example, the parallel-plate mode of

a conductor-backed slotline) on the (z, y) plane. It may be

noted that the exponentially growing part in Fig. 7 is due to

the residue contribution of the singularities at +kvP [2]. This

growing field can, therefore, be extracted out by extracting

these poles at 4zkvP from the spectral Green’s functions. The

remaining bound fields, for example, Ezb (y, z), of the total

field, EZ~y, z), can now be written as ‘”

s

+Cc
fi.b(y, z) = * _ ~Z~(y, ,z)e~k’y dkv

co,realazis

Vo ‘m——
/x.

[hf. (’b, z)~(fh:
co, realazis

– 13zg(kg, z)]e~kyy dky.

In the above expression, fi~g (kg, z) is the transform L

(17)

f the

exponentially growing part that can be expressed using the

residue theory as

d&fz(-k,,, Z)H(-kYP)
Ezg(ky, z) =

I%y+ kyp

+ @hf.(~YP>z’)~(~YP)
/cy – kyp ‘

(18)

GSZMC (*kUP, z) is the residue of GEZMC (kv, z) at +IcVP
that can be art~lytically or numerically derived from the

expressions of GEZ M. (kg, Z) [14].

Now, after the bound fields are extracted from each field

component, the “bound mode power,” l’b, can be computed as

The z-integration in (19) can often be done analytically using
the simple z-dependence of the spectral Green’s functions [ 13],

[14]. The spectral integration of (19) with respect to kg can

be evaluated along the real Icy axis, because the integrands no

longer contain the singularities at +kgp. It should be noted that

the standard spectral-domain expression of transverse power

commonly used for nonleaky transmission lines, if applied to
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Fig. 8. Contour of integration. C, for computation of the total field com-

ponent (including growing and bound fields) of a leaky transmission line.
However, the bound field. after the growing field is extracted out, can be

computed by a spectral reverse integration along the real axis.

a leaky line, could result in a nonphysical value, P(, quite

different from the bound mode power, Pb, given by (19)

– Ez(kv, Z)ii; (kv, z)] dz dkv. (20)

In (20), the spectral integration is performed strictly along the

real-kv axis and the residue contributions at +kVP (see Fig. 8)

are simply ignored. However, as it can be analytically shown,

(20) is not equivalent to the correct procedure in (17)-(19),

where the growing fields have been properly extracted out by

explicit removal of the spectral singularities at +kUP.

Using the bound mode power, Pb, we define a new “bound

mode characteristic impedance,” ZC, for a slot-type line as

2.=$.
b

(21)

Similarly, for a strip-type line the new characteristic

impedance can be defined using the total strip current, l.,

and the bound mode power, Pb, as

De

ZC=*
\Io12 ‘

(q

The ZC as defined above is the “equivalent characteristic

impedance,” that should realistically model the impedance

characteristics of a practical finite-length section of the leaky

transmission line. When the transmission line is dominantly

leaky, this definition of characteristic impedance should be

used for circuit modeling. Like a standard lossy transmission

line with purely material loss [16], here the bound mode

characteristic impedance, Zc, for a transmission line with

leakage loss will also be a complex number with real and

imaginary parts.

K. A”--l

‘J=. +0

OF” I I I I I

o 2 4 6 8 10°

SLfX WIDTH[mm]

Fig. 9. Real and imaginag parts of the characteristic impedance, Z., com-

puted using the bound mode power, Pb, in (19), for an infinite-length
conductor-backed slotline geometry. The uniform dielectric constant between
the parallel plates = 2.55, with thickness = 0.8 cm. No cover substrate on top,
frequency = 10 GHz. The corresponding results of Z., using the incorrectly
evafuated bound mode power, P:, in (20), are also shown for comparison.

P; is incorrectly evafuated along the rest k-v axis, without properly extracting

the growing fields.

A. Results

Fig, 9 shows the real and imaginary parts of the character-

istic impedance, Z,., of a conductor-backed slotline computed

using the bound-mode power P6 in (19), for different val-

ues of the slot widths. As expected, the magnitude of the

characteristic impedance has an increasing trend as the slot

width increases, starting with a zero value when the slot

width is zero. The corresponding values of the real and

imaginary parts of the ZC, if the propagating power, l’b,

is incorrectly computed as Pj in (20), are also shown for

reference. Clearly, significant differences would result if the

power is not properly evaluated with correct extraction of the

bound field components, as discussed in the last section.

For the same parameters of Fig. 9, the values of the equiva-

lent characteristic impedances, ZC, were separately calculated

from the input impedance seen by a delta-gap source connected

at the center of a finite-length stub section. The 3-D moment

method analysis of Section II was used for the computation.

This procedure is fundamentally independent of the computa-

tion of 2. in Fig. 9. For the finite-length section of Fig. 1, the

input impedance, Z,n, seen by the delta-gap current source

can be expressed as

z =V(x=o)
an

I
=V(z=o)=v( (23)

where V. is the slot voltage at the location of the delta-gap

source. V. is computed from the moment method solution, and

is equal to the coefficient of the zeroth basis function in (2).

Using a circuit equivalent of the two short-circuited slotline

stubs in Fig. 1, seen in parallel with each other across the delta-

gap at the center, the equivalent characteristic impedance can

now be derived from the above input impedance, Z,n

Zc=.
2z~n 2V0

(24)
j tan [(/3 – jcy.)~] = jtan [(/j – ja)~] ‘
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Fig. 10. Compariscm of the “equivalent characteristic impedances” seenby a
delta-gap current source across the center of a finite-length conductor-backed
slottine section, and the corresponding vatues from Fig. 9 obtained using the
new definition of the characteristic impedance.

The phase Constiint, ~, and attenuation constant, a, in (24) can

be obtained from Fig. 3, either using an ideal infinite-length

analysis, or from a moment method analysis of the finite-length

section. When the two parallel stubs in Fig. 1 are not of equal

length, (24) can be substituted by a different circuit equation

accommodating for the unequal stub lengths. Note that the

moment method computation of Zin in (23) rigorously include

the discontinuity effects at the stub ends, as well as the mutual

coupling between the two stubs, whereas the circuit equivalent

modeling of (24) does not include these effects. These are the

potential sources of error in the use of (24), but are usually

negligible causing second-order corrections.

The real parts of characteristic impedances computed using

(24) are compared in Fig, 10 with the results of Fig. 9. Similar

results for the conductor-backed slotline: for different values

of thickness, D, of the parallel-plate substrate, independently

obtained from a rigorous finite-length analysis [using (24)] and

our new characteristic impedance definition [using (19), (21)],

are compared in Fig. 11. Several computations were done with

different stub lengths, and with the same or different lengths

of the two stubs in the two sides of the excitation source,

giving consistent results. As the comparisons in Figs. 10 and

11 confirm, the characteristic impedance obtained from the

analysis of an infinite-length leaky line, using the new defi-

nition in (19) and (21), does accurately model the impedance

behavior of practical finite-length stub sections. In Figs. 10

and 11 only the real parts of the characteristic impedances are

compared with independent computations. As seen from the

results of Figs. 9 and 11, the corresponding imaginary parts

have significantly lower magnitudes compared to the real parts,

and hence could not be accurately extracted from the input

impedance, Z~n,, seen by the delta-gap source. The additional
reactive impedance, due to the additional reactive fields in the

vicinity of the delta-gap discontinuity (see Fig. 1), is likely

to have masked the smaller reactive contribution due to the

complex characteristic impedance of the slotline.

Characteristic admittance results similar to Fig. 10, but for

a two-layer stripline, are presented in Fig. 12. The results in

120

h

E,=2.55
Slot-Width= l.Omm

G Freq.=loGHz
-0
N 80 Real(ZJ

x
***

40 1’ .~

t’
*= lmag.(ZJ

.----
-- ---

1 1 I T --- J
2 4 6 6 10

Conductor-Backing
Separation(mm)

Fig, 11. Computed values of the chwacteristic impedance for an ideal
infinite-length conductor-backed slotline, obtained using the bound-mode
power, l’b, as a function of the rldckness of the substrate (e. = 2.55) between
the paratlel plates. The real parts are compared with that derived from the input
impedance of a finite-section (x x x x). Slot width = 0.1 cm, frequency = 10
GHz.

Fig. 12 are for the characteristic admittances, Y. = G. + j13C,

in contrast to the characteristic impedance results for the dual

situation of a leaky slotline. The real parts, G=, in Fig. 12,

derived from the input admittance of the finite stub geome~,

are also seen to compare well with that of the bound-mode

characteristic impedance of (19) and (22). This result further

validates our new definition of’ the characteristic impedance

for strip-type leaky lines, as well.

IV. LEAKAGE-TRANSITION BEHAVIOR ON

PRACTICAL FINITE-LENGTH TRANSMISSION LINES

The intersecting region between a guided-mode of a printed

transmission line, and the characteristic background mode of

the substrate structure to which the leakage power couples to,

is referred to as the “mode-transition” region. In one side of the

transition, where the propagation constant of the transmission

line mode is greater than that of the characteristic substrate-

mode, the transmission line mode is nonleaky. This nonleaky

mode changes over to a leaky mode as it crosses to the other

side of the transition. The above interpretation only provides

a simplistic picture. If designed around the crossover region,

the transmission line and the substrate-mode fields strongly

interact with each other, resulting in a complex multimodal

behavior.

As examples, we have shown such transition behavior in

Figs. 13 and 15 for a conductc}r-backed covered slotline and

a two-layer stripline, respectively, assuming an ideal infinite-

length extension. The splitting of the two modes in Figs. 13

and 15 due to the mutual interaction between them is clearly
seen. Similar multimodal behavior in ideal infinite-length lines

have also been demonstrated for other printed lines [5], [17],

as well as for other guided waves- [1 8]. For a practical finite-

length section of a leaky line, however, the actual excitation

in this transition region is much more complex, involving

combinations of the multiple leaky and nonleaky modes. In



534 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES> VOL 44, NO. 4, APRIL IY96

I 1 I JfJ
012345

W(mm)

Fig. 12 The real parts of the equivalent characteristic admittance,

Yc = Gc + J Bc, of the two-layer stripline of Fig. 15, derived from the input
impedance of a finite-length stub section, as compared with the corresponding
values obtained using the new “bound-mode characteristic impedance”

definition. The input impedance from which the above characterishc

impedances were derived N computed as seen across a delta-gap voltage
source at the center of the finite-length stub section (see Fig. 16 for the stub

geometry and excitation). h = 10 roils, and J\- IS the width of the stnpline.
The poorer comparison of results for larger Jt’ is due to the gradual excitation

of the additional nonleaky mode of the stripline (see Fig. 15). which the new
definition of characteristic Impedance does not account for.
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1.5

Fig, 13. Phase constant, /J, of a conductor-backed slotline with a dielectric
co~er on top, as a function of the cover thickness. Slot width = 0.1 cm;
conductor-backing substrate: e, = 2.2. thickness = 0.16 cm; frequent y = 10
GHz; dielectric constant of the cover substrate = 10.2. Two possible modes
are seen wdh a mode-transition around the region where both modes have

~pproxirnately the same pIOpcIgWOn constants. The magnified details of the

mode transition region are also shown as the inset Notice that parts of the
two modes are similar to a parallel-plate mode, with ( j~/kQ )2 H 2.2.

order to understand the interesting mode transition behavior

in a practical circuit, it is important to perform a rigorous 3-D

analysis of a finite-length section of the transmission line with

a specific source structure.

For the conductor-backed covered slotline section of

Fig. 13, we have used the 3-D analysis of section 2.0. Six

different values of the cover thickness are selected around

as well as away from the transition region. The results of

Cover
Thicknese=

0 mil

lfiJx --$. —

2.5 mile

lc#x .: —

.

‘------<’’omit‘w ‘m---=

10 roils

10%

50 roils

~,cm

Fig. 14. Voltage along a finite-length section of the conductor-backed slot-

line geometry of Fig. 13, for different vafues of the cover thicknesses.

2L = 12 cm (see Fig. 1), and tbe delta-gap current source = 1.0 A. The
different vahres of the cover thicknesses are particularly chosen around the
mode-transition region of Fig. 13, and correspond to the identified points on

the magnified inset diagram of Fig. 13.

variation of the slot-voltages are plotted in Fig. 14 as a

function of the position along the slot-section. As in Fig. 2,

the attenuation level can be estimated from the variations of

voltage in Fig. 14. The relative level of the lower envelope of

the IV(z) ]2 variation, compared to the amplitude of oscillation,

is the measure of the attenuation constant, u. It should also

be noted, due to the anticipated multimodal excitation, in

Fig. 14 we should expect a combination of an attenuating and

a nonattenuating modes with different propagation constants.

In Fig. 14, for the two extreme cases without any cover

substrate and with a thick cover substrate (the top and bottom

curves, respectively), clearly the excited modes are dominantly

leaky and nonleaky, respectively. The values of a and ~ for

these extreme cases. calculated from the IV(z) 12 variations

as done in Fig. 2, also compare well with the corresponding

values from an ideal infinite-length analysis. Interestingly,

for intermediate values of the cover thicknesses close to the

transition region (correspond to four graphs in the middle of

Fig. 14), the excitation characteristics can be seen to gradually

transform from a dominantly leaky to a dominantly nonleaky

mode, as the cover thickness increases.

Notice in Fig. 14 that for a cover thickness of 0.254 mm

(10 roils), which is above the threshold value at transition
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Fig. 15. Phase constant, ~, of a two-layer stripline as a function of the
thickness, h, of the top substrate. Strip-width = 0.12 cm, top-substrate
dielectric constant = 5.0; bottom substrate: dielectric constant = 10.2,
tlickness = 0.127 cm (50 roils); frequency = 10 GHz. Two possible modes
are seen, with a mclde transition behavior similar to that in Fig. 13.

(=0. 12 mm), the excited mode is still significantly leaky. This

suggests that the leakage level can be significant, even when

the operating pc)int is above the transition threshold. The slow

modulation of tlhe amplitude of oscillation can be clearly seen

for thickness = 10 roils, as well as for the cover thicknesses

of 5.0 roils andl 7.0 roils but to a smaller level. This is due

to the superposition of two excited modes (one leaky and

the other nonleaky) with comparable amplitudes and slightly

different propagation constants. The above results caution

that in order tot avoid leakage one must operate sufficiently

above a mode-transition zone. In other words, the no-leakage

condition as Staled in [2], [15], and [1] that requires to have

the propagation constant of a transmission line greater than all

surface characteristic modes of the substrate layering, is not a

sufficient condition for practical finite-length sections. In order

to precisely determine a safe zone of operation for practical

circuits, results similar to Fig. 14 may be used to ensure that

the nonleaky mode is the dominant form of excitation.

Leakage-transition results quite similar to Fig. 14, but for a

strip-type transmission line of Fig. 15, are shown in Fig. 16.

When the top substrate thickness, h, is sufficiently large, the

two-layer stripline in Fig. 16 is seen to be purely nonleaky.

The leakage attenuation is significant for values of h around

the transition region, but can be seen to be still significant (see

for h =50 roils) even when h is larger than the transition value

(R25 roils). For example, when h = 100 rnils, which is quite

larger than the transition value, appreciable power leakage can

be seen in Fig. 16. On the other hand, when the value of h is

much smaller (10 roils or smaller) than the transition value, the

leaky mode is e~cited to a dominant level. This is confirmed by

comparing the propagation constant derived from Fig. 16 with

that of the leaky mode of Fig. 15. However, the attenuation

constant, a, of the leaky stripline mode is small when the

top-substrate is significantly thinner than the bottom substrate.

Accordingly, the attenuation behavior in Fig. 16 is seen to
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Fig. 16. Current along a finite-length section of the two-layer stripline of
Fig. 15, for different values of the top-substrate thickness, h. The length of

the finite-length section = 2L = 5.0 cm. The delta-gap voltage source is at
the center (z = O). The different vatues of h are chosen mound the mode

transition region of Fig. 15.

have decreased when h is reduced below the transition value

of about 25 roils. If the top-substrate thickness is 5 roils or

less, even though the leaky mode is the dominant mode of

excitation, the transmission line can be practically treated as a

nonleaky line due to its significantly low level of attenuation.

V. CONCLUSION

Our investigation casts several new insights into the char-

acteristics of leakage in praclical situations of finite-length

circuits. The demonstrative results and conclusions for the

finite-length stub geometries we have presented should be

applicable to other general finite-length circuits as well. The

possibilities of power leakage in a printed transmission line,

due to the radiation as well as excitation of the surface-
guided modes, are analytically confirmed for the finite-stub

geometries. The new definition of the characteristic impedance

for a leaky line, based on the “bound mode power:’ is

shown to correctly model the impedance characteristics of the

finite-length stub sections. When the propagation along the

printed transmission line is known to be dominantly leaky, this
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new definition should be used for practical circuits, instead

of the standard definitions of the characteristic impedance

commonly used for nonleaky lines. In addition, the interesting

gradual transition behavior of leakage across the “mode-

trausition” region is demonstrated for the finite-length stub

sections of strip- and slot-type transmission lines. This clearly

demonstrates that in order to avoid arty leakage problems in a

practical circuit, one should design sufficiently above, not just

above, the mode-transition point. Such new results of practical

significance should find valuable applications in integrated

circuit designs, allowing reliable avoidance or novel use of

the leakage behavior.
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