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Power Leakage, Characteristic Impedance, and
Leakage-Transition Behavior of Finite-Length Stub
Sections of Leaky Printed Transmission Lines

Nirod K. Das, Member, IEEE

Abstract— Power leakage and leakage transition phenomena
in finite-length stub sections are studied for slot- as well as
strip-type leaky transmission lines. A three-dimensional (3-D)
method of moments is used for the rigorous analysis of the stub
sections. The results reveal several important characteristics of
power leakage in printed circuits that are not obtainable from
the two-dimensional (2-D) analyses of ideal infinite-length lines.
A new definition of the characteristic impedance for a leaky
printed transmission line is proposed, which is shown to correctly
model the impedance behavior of the finite-length sections. 1t is
noted that the standard definitions of characteristic impedance,
commonly used for nonleaky transmission lines, may not apply
to practical circuits when leakage exists. Further, the leakage
transition behavior in the finite-length sections, operated around
a *“mode-transition” region, is explained from the 3-D analysis
results. Leakage analyses of ideal infinite-length lines can not
model such transition excitation in finite-length circuits.

1. INTRODUCTION

T has been recognized that under certain conditions of

frequency and/or physical parameters, the dominant mode
of a multilayered printed transmission line can leak power
transversally due to coupling to the surface-wave mode(s)
[1]-[5]. Such leakage effects demand careful attention in
multilayer integrated circuits. and multilayer feed networks
for integrated phased arrays [6], which could otherwise result
in catastrophic coupling between adjacent circuit components.
Coupling between two transmission lines placed electrically
far apart. established through such leakage power, can also
be used to one’s advantage for designing novel printed circuit
couplers. New analyses to model the leakage in printed trans-
mission lines have been presented using a rigorous spectral
domain method [2] that has been successfully applied to a
variety of geometries in [2]-[4] and [7] as well as using a
mode-matching approach [1]. However, all the above analyses
assume an ideal infinite-length line. In order to understand the
possible leakage phenomena in practical printed circuits, it is
important to investigate the leakage in realistic finite-length
sections. Several important characteristics of power leakage in
practical circuits can not be explained using the analyses that
ideally assume an infinite-length transmission line.
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None of the research to date on power leakage has investi-
gated the impedance characteristics of leaky printed transmis-
sion lines. It is essential to define an “equivalent characteristic
impedance,” that can correctly model the impedance behavior
of finite-length sections under leakage conditions. However,
due to the “nonconventional” nature of a leaky printed trans-
mission line [2], fundamental difficulties arise. The standard
definitions of characteristic impedance, commonly used for
conventional nonleaky transmission lines, may not be appli-
cable when leakage exists.

Complex mode characteristics of an ideal infinite-length
leaky line in the vicinity of a “mode-transition” region have
been studied [5]. However, it is of interest to understand the
leakage transition behavior on a practical finite-length structure
operated in this region. Unfortunately, such leakage behavior
on finite-length circuits can not be properly explained from
the mode characteristics of an ideal infinite-length line. The
actual excitation on a finite-length section would be a com-
plex combination of the multiple modes of the infinite-length
line, with other discontinuity effects. Rigorous 3-D analysis
of the finite-length circuit with a realistic feeding source
may have to be performed in order model such excitation
behavior.

Further, it has been shown in [2] that the fields of a leaky
printed transmission line ideally of infinite length grows expo-
nentially in transverse directions to infinity at large distances.
As explained in [2], this “nonconventional” infinite growth is a
physically valid behavior for the ideal situation of an infinite-
length leaky line. This does not violate the radiation condition
of the electromagnetic theory due to the associated infinite
input power (because e~ ** grows to oo as £ — —oo) of the
infinite-length line. Of course, for a practical situation of a
finite-length leaky line, the fields can never grow indefinitely
in transverse directions. As the radiation condition dictates,
the fields in the finite-length case must eventually decay down
to zero at sufficiently large distances. Hence, the obvious
questions do arise: 1) How far in transverse directions do the
fields of a finite-length leaky line grow? and 2) how does
this growth compare and contrast with the exponential growth
predicted from the analysis of an ideal infinite-length line?
Study of finite-length sections of leaky transmission lines will
be essential in order to evaluate such field-spreading behavior.
In a practical circuit, this will help determine the extent
of the unwanted coupling between neighboring components,
established due to the power leakage.
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Fig. 1. Geometry of a finite-length section of an example leaky conduc-

tor-backed slotline m a general multilayer configuration, excited by a small
current-source at the center.

This paper attempts to answer such questions of practi-
cal significance discussed above. A rigorous 3-D moment
method analysis of finite-length leaky transmission line stubs,
excited by a delta-gap source along the line, is used for
this investigation. The analysis is applied to strip- as well
as slot-type leaky lines, demonstrating the leakage concepts
in different situations. Section II describes the 3-D moment
method analysis. The results of the 3-D analysis for radiation
as well as surface-wave leakage in selected finite-length stub
sections are compared and contrasted with the results from
an ideal infinite-length analysis. Section III presents the new
definition of the characteristic impedance for leaky lines,
and its validity is demonstrated via comparison with the
rigorous analysis. Finally, Section IV presents the results for
the leakage transition effects. In all our discussions, the scope
of a “transmission line,” or a “line,” is limited to printed
geometries only.

II. ANALYSIS OF FINITE-LENGTH STUB
SECTIONS OF LEAKY TRANSMISSION LINES

Fig. 1 shows a finite-length stub section of a leaky
conductor-backed slotline, used here as an example geometry
for the analysis. The finite-length section of length 2L is
excited at the center by a parallel delta-gap current source
of unit amplitude, and may be configured within a general
multilayer environment. Such a conductor-backed slotline can
exhibit leakage to the parallel-plate mode below the slot, and
is used here as a representative leaky transmission line. The
analysis can be applied, as discussed, to other strip- as well

as slot-type leaky transmission lines, with single or multiple
sources at arbitrary locations along the line.

We analyze the finite-length section of Fig. 1 using a
3-D moment method analysis in the spectral domain. Sim-
ilar moment method analyses have been commonly used
for printed circuit problems [8]-[12] that can be referred to
for detailed background. We close the slot, and equivalently
replace the unknown electric fields, E,(z,y), across the
slotline by magnetic current distributions, +M,(z, y). The
two magnetic current distributions, +M, and —M,, of equal
magnitude but oppositely directed to each other, are placed
above and below the ground plane, respectively

+M,(x, y) = £Es(z, y) X 2. ¢))
Now, the unknown M, (=, y) is solved by expanding it by
a set of (2N + 1) piecewise sinusoid (PWS) basis functions

with unknown coefficients, V; [9], [12]
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It is assumed that M, is z-directed, or equivalently E. is y-
directed. This is known to be a good approximation for narrow
slots, neglecting any small longitudinal (x-directed) slot-fields.
The transverse variation, h(y), across the slot includes an
appropriate edge condition to accommodate for the electric
field singularities at the slot edges. The k. in (4) is an arbitrary
numerical parameter. This parameter should preferably be
chosen close to the effective phase constant of the transmission
line [2] in order to achieve better convergence with respect to
the number of basis functions, 2N + 1. As a general guidance
to selecting N in (2), about ten or more PWS modes over one
guide wavelength should be adequate for accurate results.

The (2N + 1) unknown basis coefficients in (2) are solved
using a Galerkin testing procedure in the spectral domain,
enforcing the continuity of the magnetic field across the slot.
This results in a complete set of (2/V + 1) linear equations to
be solved for all V;’s

"7+N7 (7)
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where H(k,) and F,(k,) are, respectively, the Fourier trans-
forms of the spatial distribution functions, h(y) and f,(z),
defined in (3), (4). G .26, and G H,1M, are, respectively,
the spectral-domain multilayer Green’s functions [13], [14]
for the z-component of the magnetic field, produced by an z-
directed magnetic source. Both the source and the field points
are slightly above the ground plane for G H,2M,, whereas they
are slightly below the ground plane for G w10, - In (7) and (9),
I, is the excitation to the ith basis function from the source
current. This excitation is provided by the delta-gap cutrent
source (see Fig. 1) at the center of the slot-section that directly
couples only to the zeroth (¢ = 0) basis function at the center.
Excitation at other positions along the slotline is handled by
setting the appropriate excitation elements, I,.

After the unknown coefficients V,’s are solved from (7),
the total slot field. E(z, y), can be obtained using the
equations (1)-(6). Then, any cross-sectional field component
at an arbitrary location around the slotline can be computed
using the corresponding Green’s function component and the
Fourier transforms of the slotfield. Es(ks. ky), via an inverse
spectral integration.

It may be noted that the spectral-domain evaluation of the
moment matrix elements in (8) does not require any special
deformation of the integration contour in order to account for
the leakage phenomenon. The two-dimensional (2-D) moment
integrations are performed along the real spectral axes (k;, k)
in the same way for cases with or without any power leakage.
In distinct contrast, the spectral-domain analysis of an ideal
infinite-length leaky transmission line [2], [15] is performed
using a one-dimensional integration on the complex k, plane.
This requires a special contour deformation procedure off the
real spectral (k,) axis, around specific complex pole(s).

Extension of this analysis to strip-type lines is possible by
replacing the equivalent magnetic currents on the slot plane of
Fig. 1 by the electric currents on the strips of a strip-type line.
In addition, the parallel delta-gap current source of excitation
in Fig. 1 should be replaced by a series delta-gap voltage
source for a strip-type line. The effect of the electric current
source and any arbitrary substrate layers can be accommodated
via use of the proper Green's functions [13], [14]. The zero
tangential electric field on the strip surface is the required
boundary condition in a stripline case, instead of the continuity
of the electric field enforced across the slot in (8).

Y (ko) | H (ky)|? dky dky,  (8)

fori =0,
otherwise

®

A. Results

Fig. 2 shows the computed slot-voltage for a conductor-
backed slotline section of Fig. 1, compared with the similar
results for a nonleaky air-slotline. Clearly, the conductor-
backed slotline exhibits an attenuating behavior, in contrast to
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Fig. 2. Voltage across the slot, computed from a full-wave finite-length
analysis of the geometry of Fig. 1. W = 03 cm, no cover substrate,
uniform dielectric between parallel plates (e, = 2 55, thickness = 0.801 cm),
L = 6 cm, frequency = 10 GHz. Inset is the slot-voltage, computed from
the same full-wave finite-length analysis, across an air-slotline section (2L =
10.0 cm), fed at the center by a delta-gap 1.0 A current-source. Slot width =
0.1 cm, frequency = 10 GHz. Notice, the former geometry is clearly leaky.
whereas the latter 1s nonleaky.

the nondecaying standing-wave behavior for the air-slotline.
This result supports that finite sections of certain transmission
lines can exhibit significant attenuation, even when material
losses are absent, due to coupling to the characteristic surface
mode(s). This is consistent with the recent prediction from an
ideal infinite-length analysis [2].

For the leaky conductor-backed slotline in Fig. 1, we as-
sume an eT/P%¢Fo® = ¢T7% propagation, and a total reflection
at the short-circuited ends with a reflection coefficient I' = —1.
With these assumptions, the slot-voltage, V(x), can be written
as

V(z) = A[€+7(L—Iw1) _ e—v(L—lzl)]
= 2Asinh [v(L — |z|)]. (10
[V(2)]? = 4|4)?[sin? B(L — |z|) + sinh® a(L — |z[)]. (11)
In Fig. 2 the lower envelope of the |V(z)|? pattern is

4|A|* sinh? (L — |#|). The additional oscillating function,
superimposed above the lower envelope, is 4|4|sin® §(L —
|z}). Therefore, A and 3 can be calculated from the amplitude
and the periodicity, respectively, of the oscillating part. Using
the above value of A, the attenuation constant, «, can then
be derived from the lower envelope. The phase constant, 3,
and the attenuation constant, «, obtained using the above
procedure are compared in Fig. 3 with the respective values
from the analysis of an ideal infinite-length line [2]. Similar
comparison between the results from a finite- and an infinite-
length analyses of a two-layer stripline geometry are presented
in Fig. 4. As has been mentioned earlier, the analyses of an
infinite-length and a finite-length leaky transmission lines are
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Fig. 3. The phase, 3, and attenuation, a, constants of the conductor-backed
slotline of Fig. 2, for different values of W, derived from the voltage
distribution on a finite-length section, as compared to those obtained from
an ideal infinite-length analysis.
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Fig. 4. The phase, 3, and attenuation, o, constants of a two-layer stripline
of Fig. 15 with A~ = 10 mils, derived from the current distribution on a fi-
nite-length section, as compared to those obtained from an ideal infinite-length
analysis. The finite-section used for the analysis is a stub section of length, L,
open circuited at both ends and excited by a series delta-gap voltage source at
the center (see Fig. 16). W is the width of the stub. The poorer comparison
for larger W is due to the gradual excitation of the additional nonleaky mode
(shown in Fig. 15)

fundamentally different. However, it is interesting to see that
the two sets of results in Figs. 3 and 4 are quite close to each
other. This confirms that, in spite of the nonstandard nature
of an ideal infinite-length leaky line with indefinitely growing
fields, the propagation characteristics predicted assuming
the infinite-length idealization is still relevant and valid
for practical finite-length sections. As will be explained,
however, the infinite-length idealization will fail to model the
impedance, field-spreading, and leakage-transition behavior of
finite-length sections.

The results of Figs. 2-4 are for example cases that leak
power to a surface parallel-plate mode. Similar leakage can

also occur due to radiation to a semi-infinite medium above or
below a transmission line [2]. The slot-voltage of an example
slotline section with two semi-infinite dielectric media on its
two sides is plotted in Fig. 5. In agreement with the prediction
from an infinite-length analysis of [2], this finite-length geom-
etry also exhibits an attenuating behavior. Interestingly, the
phase, 0, and attenuation, «, constants derived from Fig. 5
are found to match with the results from a complex-branch
plane analysis [2] (which is fundamentally different) of the
infinite-length line.

The transverse field component, H,, of the finite-length
geometry of Fig. 2 is computed using the 3-D moment method
analysis. The results are compared in Fig. 6 with the ex-
ponential growth derived from a 2-D analysis of an ideal
infinite-length conductor-backed slotline [2]. The growing
nature of the field of the finite-length case, for a limited region
away from the center, is clearly seen. The growth rate in this
region agrees well with the ideal exponential growth of the
infinite-length line. However, beyond about 3.0 cm away from
the center the field amplitude for the finite-length case has
decayed down to a low level, satisfying the radiation condition
of the electromagnetic theory, whereas for the ideal infinite-
length line the field continues to grow indefinitely. As these
results suggest, the exponential transversal growth of an ideal
infinite-length leaky line should be interpreted as valid for
practical situations only up to a limited distance away from
the central region, but considered nonphysical sufficiently far
away. In order to determine the actual field-spreading behavior
of a practical finite-length section, a rigorous 3-D analysis
must be performed. Information about such field-spreading is
valuable for practical circuit design and understanding.

III. CHARACTERISTIC IMPEDANCE
OF LEAKY TRANSMISSION LINES

All research to date [1]-[5] on leakage from printed lines
has concentrated only on the propagation characteristics.
The impedance characteristics of leaky lines have not
been investigated. It is important to correctly define a
characteristic impedance, Z., for an ideal infinite-length
leaky line that can be useful for a circuit modeling of
practical finite-length sections. However, defining such an
“equivalent characteristic impedance” is made complicated
due to the nonconventional growing fields of the infinite-
length leaky line. A standard power-voltage definition
[Z. = (voltage)? /(cross-sectional power)], or a power-current
definition [Z, = (cross-sectional power)/(current)?] of the
characteristic impedance would not apply under this situation.
Due to the growing nature of the transverse fields, which
increase to infinity at large distances, the total cross-sectional
power would become infinitely large. This will result in a zero
or an infinite value of the characteristic impedance, if a power-
voltage or a power-current definition is used, respectively. Of
course, these trivial values are not practically meaningful for
circuit modeling. The voltage-current definition (Z. = voltage
between the two conductors/the total current) would also
not work. The strong non-TEM and nonconservative nature
of the leakage fields can result in invalid calculation of the
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Fig. 6. Transverse variation of the y-component of the magnetic field, H,,
for the conductor-backed slotline geometry of Fig.2, at * = 3.0 cm,
computed from a 3-D moment method analysis of the finite-length geometry.
The exponential variation predicted from an ideal infinite-length analysis is
also shown for comparison.

characteristic impedance. This is due to the strong ambiguity
in defining the voltage of a strip-type leaky line for a given
strip current, or the total current of a slot-type leaky line for
a given slot voltage.

We attempt to provide a suitable definition of the “equivalent
characteristic impedance” of a leaky line that can be used

V1.5 and a/ky = 0.068.

for circuit modeling purposes. Shown in Fig. 7, a transverse
field distribution of an infinite-length leaky line has been
decomposed into two distinct parts [2]. The part that in-
creases exponentially in transverse directions is excited due
to coupling to the characteristic surface-mode of the substrate
structure. This part is referred to as the “growing” field.
When this growing field is extracted out of the total field
distribution, the remaining part is tightly confined to the central
guiding region, and is referred to as the “bound” field. The
bound parts of the transverse fields actually carry the guided
signal along the central region of the transmission line, and
closely resemble the standard transmission line fields with a
quasi-TEM-like behavior. Therefore. these bound transmission
line-like fields are expected to be “seen” by a circuit element
connected across the leaky line. On the other hand, the growing
fields are only loosely attached to the central guiding region
that are responsible for distributed radiation loss from the
transmission line. These radiation fields are not a part of the
quasi-TEM guided fields, and therefore. would not be “seen”
across the line in a circuit sense.

We analytically extract out the growing parts from the total
transverse fields of an infinite-length line, and then compute
the power due to the remaining bound fields. A characteristic
impedance defined using this bound-mode power, referred
to as the “bound mode characteristic impedance,” is shown
to correctly model the input impedance behavior of finite-
length stub sections. In the following we derive the bound-
mode power for a conductor-backed slotline that can be
similarly extended for any other leaky line. The transverse field
components of an ideal infinite-length line can be expressed in
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Fig. 7. Decomposition of the transverse variation of a field component, E.,
of an ideal infinite-length leaky transmission line (a conductor-backed slotline
geometry, for example) into 1) the “bound” field tightly confined to the central
guiding region; and 2) the exponentially “growing” field due to the excitation
of a characteristic surface mode. The field is plotted along a transverse (y)
line below the slot, where the parallel-plate mode exists. The growing field
would not exist above the slot. Also note that the example field, E., is shown
with an odd symmetry about the origin, but in general the field can have an
odd or an even symmetry.

the spectral domain using the Fourier transform of the strip-
currents or slot-fields, respectively, for a strip- or slot-type
transmission line, via spectral Green’s functions. For a leaky
conductor-backed slotline propagating in the £ direction (see
Fig. 1 for cross-sectional geometry), assume the electric field,

E,, distribution across the slot

E, = §Voh(y)e %", (12)

This field distribution is equivalent to two magnetic currents
+M, and —M,, respectively-placed above or below the slot,
where

+M,(z, y) = 2Ey(z, y) x £ = £2Vph(y)e %=, (13)

With this expression for the slot-field, a cross-sectional field
component, for example the z-component of electric field,
E.(y, z), can be expressed as

1 [t

E,(y, 2) = o CEz(ky, z)ed*Y dk,

Vo [
- 2w —0,C

Gr,m, (ky, 2) = =Gr 10, (—ke, by, 2);

= +éE22M@(*/ﬂea kya z)i

Gp.a, (ky, 2)H(ky)e™ Y dky, (14)

2 <0,
#>0 (15

where H(k,) is the Fourier transform of h(y). With similar
notation used in (8), and also to be used for other field
components, G g, 2n, (kz, ky, 2) and Gg_10, (kz, ky, 2) are,

respectively, the spectral Green’s functions [13], [14] for E,
valid above and below the ground plane (z > 0 or 2 <
0), respectively produced by an x-directed magnetic current
source placed slightly above or below the ground plane. Notice
that the k, spectral parameter in the Green’s functions have
been substituted by —k. in (15) which accounts for the e~7*<®
variation along the transmission line.

The required contour, C, of the inverse spectral integration
in (14) is deformed around the poles, £k,;, on the complex
ky plane (see Fig. 8)

Ky = /B2 — k% Tm (yp) > 0

where 3, is the propagation constant of the characteristic
surface-wave mode (for example, the parallel-plate mode of
a conductor-backed slotline) on the (z, y) plane. It may be
noted that the exponentially growing part in Fig. 7 is due to
the residue contribution of the singularities at +k,, [2]. This
growing field can, therefore, be extracted out by extracting
these poles at +k,, from the spectral Green’s functions. The
remaining bound fields, for example, E.;(y, z), of the total
field, E,(y, z), can now be written as

(16)

. 1 [t .

Ea(y, 2) = — E.u(y, 2)e?*¥ dky
27 —oo,realaxis
Vo [T

= [éEzMz (ky, z)H (ky)

2m —oo,realawxis

— B, 4(ky, 2)]e’™¥ dk,. (17)

In the above expression, E’zg(ky, z) is the transform of the
exponentially growing part that can be expressed using the
residue theory as

5 GR . (=kyp, 2)H(—k
Buy(ky, 2) = EzMw(ky:{kZ (=Kyp)
n é'gzMac (kyp, 2)H (kyp)
ky_kyp

(18)

GE 11 (Ekyp, 2) is the residue of Gr_n, (ky, 2) at tky,
that can be analytically or numerically derived from the
expressions of Gp_ar, (ky, 2) [14].

Now, after the bound fields are extracted from each field
component, the “bound mode power,” P, can be computed as

1 +oo oo B o
P / By (ky, 2)H2 Ry, 2)

27 —oo,realazis J —o0

— Ey(ky, 2)H}y(ky, 2)]dzdk,. (19)

The z-integration in (19) can often be done analytically using
the simple z-dependence of the spectral Green’s functions [13],
[14]. The spectral integration of (19) with respect to k, can
be évaluated along the real k, axis, because the integrands no
longer contain the singularities at Z-k,,. It should be noted that
the standard spectral-domain expression of transverse power
commonly used for nonleaky transmission lines, if applied to
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Fig. 8. Contour of integration. C, for computation of the total field com-
ponent (including growing and bound fields) of a leaky transmission line.
However, the bound field. after the growing field is extracted out, can be
computed by a spectral inverse integration along the real axis.

a leaky line, could result in a nonphysical value, P/, quite
different from the bound mode power, Py, given by (19)
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2r —oo,realaxris J —oo

— E,(ky, 2)H}(ky, z)] dzdk,. (20)

In (20), the spectral integration is performed strictly along the
real-k, axis and the residue contributions at +k,, (see Fig. 8)
are simply ignored. However, as it can be analytically shown,
(20) is not equivalent to the correct procedure in (17)—(19),
where the growing fields have been properly extracted out by
explicit removal of the spectral singularities at k.

Using the bound mode power, Py, we define a new “bound
mode characteristic impedance,” Z., for a slot-type line as

Vol?
Pg‘ ’

Ze= @

Similarly, for a strip-type line the new characteristic

impedance can be defined using the total strip current, I,
and the bound mode power, P, as
_

© P

The Z. as defined above is the “equivalent characteristic
impedance,” that should realistically model the impedance
characteristics of a practical finite-length section of the leaky
transmission line. When the transmission line is dominantly
leaky, this definition of characteristic impedance should be
used for circuit modeling. Like a standard lossy transmission
line with purely material loss [16], here the bound mode
characteristic impedance, Z., for a transmission line with
leakage loss will also be a complex number with real and
imaginary parts.

(22)
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Fig. 9. Real and imaginary parts of the characteristic impedance, Z., com-
puted using the bound mode power, P, in (19), for an infinite-length
conductor-backed slotline geometry. The uniform dielectric constant between
the parallel plates = 2.55, with thickness = 0.8 cm. No cover substrate on top,
frequency = 10 GHz. The corresponding results of Z., using the incorrectly
evaluated bound mode power, P/, in (20), are also shown for comparison.
P/ is incorrectly evaluated along the real k,, axis, without properly extracting
the growing fields.

A. Results

Fig. 9 shows the real and imaginary parts of the character-
istic impedance, Z,., of a conductor-backed slotline computed
using the bound-mode power P, in (19), for different val-
ves of the slot widths. As expected, the magnitude of the
characteristic impedance has an increasing trend as the slot
width increases, starting with a zero value when the slot
width is zero. The corresponding values of the real and
imaginary parts of the Z., if the propagating power, P,
is incorrectly computed as P, in (20), are also shown for
reference. Clearly, significant differences would result if the
power is not properly evaluated with correct extraction of the
bound field components, as discussed in the last section.

For the same parameters of Fig. 9, the values of the equiva-
lent characteristic impedances, Z,, were separately calculated
from the input impedance seen by a delta-gap source connected
at the center of a finite-length stub section. The 3-D moment
method analysis of Section II was used for the computation.
This procedure is fundamentally independent of the computa-
tion of Z. in Fig. 9. For the finite-length section of Fig. 1, the
input impedance, Z,,, seen by the delta-gap current source
can be expressed as
V(z=0)

1
where Vj is the slot voltage at the location of the delta-gap
source. Vj is computed from the moment method solution, and
is equal to the coefficient of the zeroth basis function in (2).
Using a circuit equivalent of the two short-circuited slotline
stubs in Fig. 1, seen in parallel with each other across the delta-
gap at the center, the equivalent characteristic impedance can
now be derived from the above input impedance, Z,,,

7 - 2Zi _ 2VO
©7 jtan[(B —ja)L]  jtan[(B — je)L]’

Zun = =V(z=0)=W (23)

(24)
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Fig. 10. Comparison of the “equivalent characteristic impedances” seen by a
delta-gap current source across the center of a finite-length conductor-backed

slotline section, and the corresponding values from Fig. 9 obtained using the
new definition of the characteristic impedance.

The phase constant, 3, and attenuation constant, «, in (24) can
be obtained from Fig. 3, either using an ideal infinite-length
analysis, or from a moment method analysis of the finite-length
section. When the two parallel stubs in Fig. 1 are not of equal
length, (24) can be substituted by a different circuit equation
accommodating for the unequal stub lengths. Note that the
moment method computation of Z;,, in (23) rigorously include
the discontinuity effects at the stub ends, as well as the mutunal
coupling between the two stubs, whereas the circuit equivalent
modeling of (24) does not include these effects. These are the
potential sources of etrror in the use of (24), but are usually
negligible causing second-order corrections.

The real parts of characteristic impedances computed using
(24) are compared in Fig. 10 with the results of Fig. 9. Similar
results for the conductor-backed slotline’ for different values
of thickness, D, of the parallel-plate substrate, independently
obtained from a rigorous finite-length analysis [using (24)] and
our new characteristic impedance definition [using (19), (21)],
are compared in Fig. 11. Several computations were done with
different stub lengths, and with the same or different lengths
of the two stubs in the two sides of the excitation source,
giving consistent results. As the comparisons in Figs. 10 and
11 confirm, the characteristic impedance obtained from the
analysis of an infinite-length leaky line, using the new defi-
nition in (19) and (21), does accurately model the impedance
behavior of practical finite-length stub sections. In Figs. 10
and 11 only the real parts of the characteristic impedances are
compared with independent computations. As seen from the
results of Figs. 9 and 11, the corresponding imaginary parts
have significantly lower magnitudes compared to the real parts,
and hence could not be accurately extracted from the input
impedance, Z;,. seen by the delta-gap source. The additional
reactive impedance, due to the additional reactive fields in the
vicinity of the delta-gap discontinuity (see Fig. 1), is likely
to have masked the smaller reactive contribution due to the
complex characteristic impedance of the slotline.

Characteristic admittance results similar to Fig. 10, but for
a two-layer stripline, are presented in Fig. 12. The results in
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Fig. 11. Computed values of the characteristic impedance for an ideal
infinite-length conductor-backed slotline, obtained using the bound-mode
power, Py, as a function of the thickness of the substrate (e, = 2.55) between
the parallel plates. The real parts are compared with that derived from the input
impedance of a finite-section (x X X x). Slot width = 0.1 cm, frequency = 10
GHz.

Fig. 12 are for the characteristic admittances, Y, = G.+ 7 B.,
in contrast to the characteristic impedance results for the dual
situation of a leaky slotline. The real parts, G., in Fig. 12,
derived from the input admittance of the finite stub geometry,
are also seen to compare well with that of the bound-mode
characteristic impedance of (19) and (22). This result further
validates our new definition of the characteristic impedance
for strip-type leaky lines, as well.

IV. LEAKAGE-TRANSITION BEHAVIOR ON
PRACTICAL FINITE-LENGTH TRANSMISSION LINES

The intersecting region between a guided-mode of a printed
transmission line, and the characteristic background mode of
the substrate structure to which the leakage power couples to,
is referred to as the “mode-transition” region. In one side of the
transition, where the propagation constant of the transmission
line mode is greater than that of the characteristic substrate-
mode, the transmission line mode is nonleaky. This nonleaky
mode changes over to a leaky mode as it crosses to the other
side of the transition. The above interpretation only provides
a simplistic picture. If designed around the crossover region,
the transmission line and the substrate-mode fields strongly
interact with each other, resulting in a complex multimodal
behavior.

As examples, we have shown such transition behavior in
Figs. 13 and 15 for a conductor-backed covered slotline and
a two-layer stripline, respectively, assuming an ideal infinite-
length extension. The splitting of the two modes in Figs. 13
and 15 due to the mutual interaction between them is clearly
seen. Similar multimodal behavior in ideal infinite-length lines
have also been demonstrated for other printed lines [5], [17],
as well as for other guided waves [18]. For a practical finite-
length section of a leaky line, however, the actual excitation
in this transition region is much more complex, involving
combinations of the multiple leaky and nonleaky modes. In
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Fig. 12 The real parts of the equivalent characteristic admittance,
Y. = G+ 3 B.. of the two-layer stripline of Fig. 15, derived from the input
impedance of a finite-length stub section, as compared with the corresponding
values obtained using the new “bound-mode characteristic impedance”
definition. The input impedance from which the above characteristic
impedances were derived 18 computed as seen across a delta-gap voltage
source at the center of the finite-length stub section (see Fig. 16 for the stub
geometry and excitation), h = 10 mils, and ¥¥" 1s the width of the stripline.
The poorer comparison of results for larger 137 is due to the gradual excitation
of the additional nonleaky mode of the stripline (see Fig. 15), which the new
definition of characteristic impedance does not account for.
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Fig. 13. Phase constant, /3, of a conductor-backed slotline with a dielectric
cover on top, as a function of the cover thickness. Slot width = 0.1 cm;
conductor-backing substrate: €, = 2.2, thickness = 0.16 cm; frequency = 10
GHz, dielectric constant of the cover substrate = 10.2. Two possible modes
are seen with a mode-transition around the region where both modes have
approximately the same propagation constants. The magnified details of the
mode transition region are also shown as the inset Notice that parts of the
two modes are similar to a parallel-plate mode, with (3/ko)? ~ 2.2.

order to understand the interesting mode transition behavior
in a practical circuit, it is important to perform a rigorous 3-D
analysis of a finite-length section of the transmission line with
a specific source structure.

For the conductor-backed covered slotline section of
Fig. 13, we have used the 3-D analysis of section 2.0. Six
different values of the cover thickness are selected around
as well as away from the transition region. The results of
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Fig. 14. Voltage along a finite-length section of the conductor-backed slot-
line geometry of Fig. 13, for different values of the cover thicknesses.
2L = 12 cm (see Fig. 1), and the delta-gap current source = 1.0 A. The
different values of the cover thicknesses are particularly chosen around the
mode-transition region of Fig. 13, and correspond to the identified points on
the magnified inset diagram of Fig. 13.

variation of the slot-voltages are plotted in Fig. 14 as a
function of the position along the slot-section. As in Fig. 2,
the attenuation level can be estimated from the variations of
voltage in Fig. 14. The relative level of the lower envelope of
the |V (z)|? variation, compared to the amplitude of oscillation,
is the measure of the attenuation constant, «. It should also
be noted, due to the anticipated multimodal excitation, in
Fig. 14 we should expect a combination of an attenuating and
a nonattenuating modes with different propagation constants.

In Fig. 14, for the two extreme cases without any cover
substrate and with a thick cover substrate (the top and bottom
curves, respectively), clearly the excited modes are dominantly
leaky and nonleaky, respectively. The values of « and & for
these extreme cases. calculated from the |V (z)|? variations
as done in Fig. 2, also compare well with the corresponding
values from an ideal infinite-length analysis. Interestingly,
for intermediate values of the cover thicknesses close to the
transition region (correspond to four graphs in the middle of
Fig. 14), the excitation characteristics can be seen to gradually
transform from a dominantly leaky to a dominantly nonleaky
mode, as the cover thickness increases.

Notice in Fig. 14 that for a cover thickness of 0.254 mm
(10 mils), which is above the threshold value at transition
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Fig. 15. Phase constant, 3, of a two-layer stripline as a function of the
thickness, h, of the top substrate. Strip-width = 0.12 cm; top-substrate
dielectric constant = 5.0; bottom substrate: dielectric constant = 10.2,
thickness = 0.127 ¢cm (50 mils); frequency = 10 GHz. Two possible modes
are seen, with a mode transition behavior similar to that in Fig. 13.

(=~20.12 mm), the excited mode is still significantly leaky. This
suggests that the leakage level can be significant, even when
the operating point is above the transition threshold. The slow
modulation of the amplitude of oscillation can be clearly seen
for thickness = 10 mils, as well as for the cover thicknesses
of 5.0 mils and 7.0 mils but to a smaller level. This is due
to the superposition of two excited modes (one leaky and
the other nonleaky) with comparable amplitudes and slightly
different propagation constants. The above results caution
that in order to avoid leakage one must operate sufficiently
above a mode-transition zone. In other words, the no-leakage
condition as stated in [2], [15], and [1] that requires to have
the propagation constant of a transmission line greater than all
surface characteristic modes of the substrate layering, is not a
sufficient condition for practical finite-length sections. In order
to precisely determine a safe zone of operation for practical
circuits, results similar to Fig. 14 may be used to ensure that
the nonleaky mode is the dominant form of excitation.
Leakage-transition results quite similar to Fig. 14, but for a
strip-type transmission line of Fig. 15, are shown in Fig. 16.
When the top substrate thickness, h, is sufficiently large, the
two-layer stripline in Fig. 16 is seen to be purely nonleaky.
The leakage attenuation is significant for values of h around
the transition region, but can be seen to be still significant (see
for h = 50 mils) even when h is larger than the transition value
(~25 mils). For example, when - = 100 mils, which is quite
larger than the transition value, appreciable power leakage can
be seen in Fig. 16. On the other hand, when the value of A is
much smaller (10 mils or smaller) than the transition value, the
leaky mode is excited to a dominant level. This is confirmed by
comparing the propagation constant derived from Fig. 16 with
that of the leaky mode of Fig. 15. However, the attenuation
constant, ¢, of the leaky stripline mode is small when the
top-substrate is significantly thinner than the bottom substrate.
Accordingly, the attenuation behavior in Fig. 16 is seen to
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Fig. 16. Current along a finite-length section of the two-layer stripline of
Fig. 15, for different values of the top-substrate thickness, k. The length of
the finite-length section = 2L = 5.0 cm. The delta-gap voltage source is at
the center (z = 0). The different values of & are chosen around the mode
transition region of Fig. 15.

have decreased when A is reduced below the transition value
of about 25 mils. If the top-substrate thickness is 5 mils or
less, even though the leaky mode is the dominant mode of
excitation, the transmission line can be practically treated as a
nonleaky line due to its significantly low level of attenuation.

V. CONCLUSION

Our investigation casts several new insights into the char-
acteristics of leakage in practical situations of finite-length
circuits. The demonstrative results and conclusions for the
finite-length stub geometries we have presented should be
applicable to other general finite-length circuits as well. The
possibilities of power leakage in a printed transmission line,
due to the radiation as well as excitation of the surface-
guided modes, are analytically confirmed for the finite-stub
geometries. The new definition of the characteristic impedance
for a leaky line, based on the “bound mode power,” is
shown to correctly model the impedance characteristics of the
finite-length stub sections. When the propagation along the
printed transmission line is known to be dominantly leaky, this
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new definition should be used for practical circuits, instead
of the standard definitions of the characteristic impedance

commonly used for nonleaky lines. In addition, the interesting

gradual transition behavior of leakage across the “mode-
transition” region is demonstrated for the finite-length stub
sections of strip- and slot-type transmission lines. This clearly
demonstrates that in order to avoid any leakage problems in a
practical circuit, one should design sufficiently above, not just
above, the mode-transition point. Such new results of practical
significance should find valuable applications in integrated
circuit designs, allowing reliable avoidance or novel use of
the leakage behavior.
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